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INTRODUCTION

The problem of vibrations of a conical elastic shell, treated in many important
works, has not been so far, to the author's knowledge, solved satisfactorily,
because of its great mathematical complexity. The flutter of a divergent nozzle
considered as a conical shell is still more involved due to the additional diffi-
culties connected with the necessary determination of the nonstationary in-
ternal flow.

The vibrations of a conical shell in vacuum were analyzed by Strutt,9 using
energy methods, for the case of a conical shell, built in at its smaller base and
free at the other end, assuming that the mean surface is inextensible. Breslavskii,
using energy method and replacing the conical shell by an equivalent cylindrical
shell of appropriate diameter, has investigated the influence of extension of the
conical shells mean surface on its natural frequencies. Grigoluk,4 using also
energy methods, has determined the natural frequencies of a conical shell
simply supported at the periphery of both ends.

In some papers of particular interest to acoustics7,8 concerning vibrations of
conical loudspeaker membranes or shells, attempts were made to determine
their natural frequencies making different simplifications in the shell equations
and boundary conditions, using either energy methods or trying solutions in
form of infinite series. Shulman" in his Sc.D. thesis has used energy and Galerkin
methods to analyze the vibrations of conical shells in vaccum. Using Galerkin's
method Shulman has also solved the flutter problem of a conical shell in external
flow using the piston theory approximation for the aerodynamic pressure.

Dzygadlo2 has given a solution of the flutter problem of a pointed conical
shell in an external supersonic flow, deducing aerodynamic forces from the
perturbation potential equations and solving the shell equations by the method
of finite Fourier transformations.
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Niesytto and Sep' investigated flutter of a cylindrical shell with internal flow.
The flow is found from a perturbation potential, whose solution, assuming con-
stant density, is given in the form of an infinite series with coefficients determined

from the solution of an infinite set of equations obtained from the requirement
of satisfying the aerodynamic boundary conditions. The solution of the shell
equation is also obtained in the form of an infinite series with coefficients that
are solutions of an infinite set of equations obtained from the boundary con-
ditions of the shell. The critical parameters can be calculated limiting the
characteristic determinant to a finite number of terms. This method seems
rather complicated and as the pressure is expressed in the form of
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where K is Bessel's function depending on the flow velocity and vibration
frequency, the possibility of encountering in practice the case of the flow param-
eters being such, that the denominator becomes zero, requires further clari-
fication.

FLOW THROUGH A DIVERGENT NOZZLE WITH

OSCILLATING WALLS

In order to determine the critical flutter parameters it is necessary to find
the nonstationary flow through a divergent nozzle with harmonically oscillating
walls. This problem was solved by the author3 and the method will be briefly
summarized here.

Assuming that the flow can be described by a perturbation potential and that
the nozzle section changes sufficiently smoothly into the divergent shape so that
there are no velocity singularities the disturbance potential cp equation takes the

following form:
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Calling w(x,a,t)= E w„(x) cos naeiwt the normal wall displacement, the boundary


conditions at the nozzle walls, whose static shape is given by R0  = 1 + f (x), are:
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and on the characteristics 011, 021 at the entry to the divergent nozzle, i.e., on

= 1 — .r tan for 0 < x < cot (3 (3)
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Having solved the potential Eq. (1) for the above boundary condition the
oscillating pressure amplitude can be found, for each value of the cross-section
vibration mode n, from the well known linearized relation:

P = PoU
9
 a a

at a.r
(4)

To find the flow potential we will transfer to the plane of characteristics
(E, n) using the known transformation

x = Ecos d3 + 77sin

I? = 1 — Esin 0  +  n cos o
1

where tau fi = —

The potential equation and the boundary conditions will be transformed
accordingly into E. n  variables and the nozzle walls will be given by relations

n.,  (E) and %JO.
Dividing the whole nozzle area into regions such as 01 1 2, 1 2 4 3, 3 4 6, ..

limited by the characteristics, it can be noted that for the regions having the
nozzle wall as one of its boundaries, e.g., 0213, we have a modified Picard problem
and for the ones limited by characteristic lines only, e.g., 1243, we have a
Darboux problem.

The solution of Eq. (1) taking into account the boundary conditions [Eqs. (2)
and (3)] transformed into the characteristics plane can hence be solved by
reducing to Volterra's integral equations whose Riemann functions can be found
using known methods.
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DETERMINATION OF CRITICAL FLUTTER VELOCITY

As can be seen from the previous section, the determination of the pressure
on the nozzle wall can be made only after assuming the wall displacement mode.
This limits the possible methods of solution of the elastic shell equations taking
into account the aerodynamic loads to the energy and Galerkin methods.

The equation of small shell vibrations in E, coordinates, taking into account
only the normal components of the inertia forces, have the following form :

V4F — EhV 2 = 0


DV4w N7k2F p.,hhaa2t7 p = 0

where F = stress function
w = normal component of shell displacement

v2 1  [ a (B a) + a (A a)]
AB A aE B

7,k2 _  1  [a (13  k2  0 ) + a (A k a )1
AB N aE B N-

A, B = first fundamental magnitudes of the shell midsurface

1
k1 = I k2 = —D — shell-midsurface curvatures

R1' n2 —

Eh3
D — 	 — bending rigidity


12(1 — v2)

p = aerodynamic load

e stress, F, and displacement, w, functions must satisfy corresponding
boundary conditions, which using the "technical- shell theory and Oniashvili's6
approximations are:

Bolt-in, or simply sopported, edges;

norn -1 displacement :

longitudinal displacement:

w = 0


u = 0

which according to Ref. 6 is equivalent to

a3F
= oaE3
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circumferential displacement:

v = 0 (10)


which according to Ref. 6 is equivalent to

(92F
	 — 0

and for the case of the built-in edge:

or in the case of the simply supported edge:

M1 = Da 32w + v
a2w
	 = 0e

Free edges:  The generalized, according to Kirchhoff, shearing force:

= — 3E2 3EarD[33w + (2 — v) 03w — o

Bending moment:

longitudinal force:

circumferential force:

a2wa2w
MI =D(  +v 	 =3E2

a2F
== 0aE2




Generally speaking, two sets of functions, F„,„and w„,,„ satisfying the chosen
boundary conditions, can be assumed and subsequently using the variational
energy method the characteristic determinant, from which the critical param-
eters are deduced, can be obtained. Due to the tremendous amount of work
involved in calculating the energy and generalized forces this method seems
impractical.

The orthogonalization variational method used by Oniashvili6 to analyze
shell vibrations consisting in the determination of the stress F and displacement
w functions using two orthogonal function sets satisfying the required boundary
conditions and at the same time mutually orthogonal, cannot be used in the
present case, as such sets in the case of conical shells even with partially fulfilled
boundary conditions are not mutually orthogonal.
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From the above considerations it appears that the only practical method is
Galerkin's based on a set of functions satisfying chosen but not necessarily all
boundary conditions.

From the set of Eq. (6) following, i.e., using the identity deduced by Shulman'°:


[r4 v 4  r2v4[r2(...
(16)


in the case of a conical shell using spherical coordinates for which

= r, A = 1, RI = k1 = 0

= cy,  B = r  sin
(17)
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the following single equation is obtained:

r2v4r4p = 0 (17a)Dr2'74(r3V4w) + Eh  cot2e  [r3w rr1 - I- t shhr2V4 (r3w")

where

_ 1 a rra(•••)] 1 	 a2(...) 

r ar L ar r2  sin20 aa2

(18)

We assume then, that the displacement can be expressed by the series:

mr(rro)fn r rocos naei
w = E [C,„„sin

ri — ror1 — ro
(19)
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where fn is determined from the condition, that the generalized Kirchhoff
force at the free end is zero, i.e.,

	

[
a'w 


a'w ) y
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+
araa2 Lr,

— (2 = 0 (20)

wherefrom after transformations:
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The assumed displacement satisfies exactly only two boundary conditions,
zero displacement at the fixed end and zero shearing force at the free end.
According to Oniashvili6 in the case of thin shells Poisson's coefficients can be
taken equal to zero, y = 0 in the moment boundary conditions. In this case
Eq. (ii) will satisfy additionally two boundary "moment- conditions which
physically means that one edge is hinged, the other is free.

In Eq. (17a) there is the unknown aerodynamic pressure, which is determined
for each  Wki  and assumed velocity and vibration frequency using the method
previously summarized. The pressure distribution,  pkl,  calcuated in this way is
then developed in a Fourier series in

mr(r — ro) mr(r — ro)

	

sin and cos i.e.,

	

— ro r — ro

mir(r — ro) mir(r —ro) 

Pk1 = E Sill cos na E Cki„,,,cos cos na (23)

— ro —  ro

For the assumed vibration mode [Eq. (2 2)] and the chosen number of values
of  m  and n the aerodynamic loads will be expressed by the following formula:

inr(r —ro)
sin cos na E skim.

r, — ro
kl

(24)
mn

inr(r — ro) 

+ E cos cos na E Ck1mj e", in =  1,2,3. •  n =  0,1,2- •

—  ro kl

where the Fourier coefficients skim', and cklmn are functions of frequency and
velocity.
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The procedure of determination of critical parameters is hence as follows.

The quantity of terms, m n which will be used in the calculation is chosen

and for this number of terms  k m n the aerodynamic load is deter-
mined for a given pair of values of frequency and velocity. Then we find the
coefficients of the corresponding Fourier series sum. and

Substituting Eqs. (22) and (24) in (17a) multiplying Eq. (17a) by respective
v,„„„  and integrating over the conical shell surface a set of  m n algebraic
equations for the c„,„ unknown coefficients is obtained. The critical parameters
will be determined from the condition that the characteristic determinant nmst
be equal to zero if the chosen set of frequency and velocity magnitudes corre-
spond to the critical condition. The process of finding the zero value of the
characteristic determinant is quite laborious, as the effect of changing the
velocity and frequency on the value of the characteristic determinant must be
found by a trial and error method. Unfortunately, a simpler method of finding
the critical values is not known.

The calculation may be greatly simplified if we limit ourselves to a single
value of  n  and a certain number of longitudinal waves m as Shulman" has done
for the case of external flow.

It is regretted that no results of actual numerical calculations are available
to be presented.
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My impression on reading and hearing this paper is that the lecturer has taken con-
siderable effort to make the calculation of the aerodynamic forces exact, but I feel that
the structural terms are not as accurate. A more general set of shell deformation equations
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are probably necessary to get worthwhile results, equations which consider the in-plane

inertia forces as well as the radial inertia forces. Such forces have been shown to be

important in studies for circular cylindrical shells. Would the lecturer care to comment?

If, however, the simpler form of equations are to be solved [i.e., Eq. (6)], then instead

of the method of analysis presented, has the lecturer considered the possibility of assuming
first the form of the function w and using the first of equations in Eq. (6) to derive the
form of the function  .1.?These two functions can then be substituted into the second of
equations in (6) which can be solved by Galerkin's method.

Author's reply to discussion:

The method given in the paper is an attempt—the first known to the author—to
solve the difficult problem presented. It was considered sufficient, as a first approx-
imation, to use simpler shell-deformation equations and later on to the neglected
terms. Unfortunately, there is no experience available yet on the effect of the
neglected inertia terms and I agree that this must be investigated.

As to the proposed approach to the solution of the set of equations in Eq. (6),
it is a valuable and interesting suggestion.

It may be worth noting that the aerodynamic forces are not calculated exactly,
but also by an approximate method which is quite complicated.




